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Hybrid transformer‑CNN model 
for accurate prediction of peptide 
hemolytic potential
Sultan Almotairi 1,2, Elsayed Badr 3,4*, Ibrahim Abdelbaky 5, Mohamed Elhakeem 5* & 
Mustafa Abdul Salam 5,6

Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest 
in developing advanced computational techniques for precise prediction. Our proposed approach 
takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers 
to detect complex patterns inherent in the data. The integration of CNN and transformers’ attention 
mechanisms allows for the extraction of relevant information, leading to accurate predictions 
of hemolytic potential. The proposed method was trained on three distinct data sets of peptide 
sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. 
Our computational results demonstrated the superior efficacy of our models compared to existing 
methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 
0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. 
With its potential to guide experimental efforts in peptide design and drug development, this method 
holds great promise for practical applications. Integrating CNNs and transformers proves to be a 
powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to 
drive advancement in this area.

Keywords  Peptides, Hemolysis, Deep learning, Convolutional neural networks (CNNs), Transformers, Drug 
design, Hemolytic prediction

In recent years, the prediction of hemolytic activity in peptides has become a critical focus in biomedical and 
pharmaceutical research1–3. Hemolysis, the process involving the rupture of red blood cells, has substantial 
implications for drug development and therapeutic design4,5. This study introduces a sophisticated computational 
approach employing CNNs and transformers to enhance the precision and efficiency of predicting hemolytic 
potential in peptides. The background of this investigation is underscored by the intricate nature of the evaluation 
of hemolytic activity and the constraints associated with conventional experimental approaches. Conventional 
methodologies often require significant time and resources, provoking a paradigm shift towards computational 
methods. In this context, advanced deep learning architectures, such as CNNs and transformers, have emerged 
as promising tools to navigate the complexities inherent in unraveling the sequence-structure relationships gov-
erning hemolysis in peptides. The research problem addressed in this study revolves around the imperative to 
improve the accuracy and efficiency of predicting hemolytic potential. Traditional experimental approaches are 
not only resource-intensive but also time-consuming. Computational methods provide a viable alternative, and 
our hybrid architecture uniquely bridges this gap by combining CNN’s local pattern detection with transform-
ers global relationship comprehension, resulting in a deeper understanding of hemolytic activity determinants.

The field of predicting hemolytic activity in peptides is fundamental to our study. To better understand this 
complex area, we delve into previous research using a range of computational methods, carefully examining their 
strengths and weaknesses. By synthesizing this literature, we provide a valuable framework for our research, shed 
light on current knowledge gaps, and pave the way for our innovative approach. Past studies relied on feature 
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engineering or shallow models, often overlooking intricate long-range dependencies within peptide sequences6–11. 
Although traditional methods offer valuable information, they have restrictions in terms of scalability, efficiency, 
and the ability to understand complex sequence-structure relationships. As a result, researchers have increas-
ingly relied on computational methods to enhance and streamline prediction. Numerous computational strate-
gies have been investigated, including machine learning algorithms and advanced deep learning architectures. 
Machine learning models12, including support vector machines (SVM) and random forests, have been applied to 
predict hemolytic potential based on peptide sequences12–17. Deep learning models including RNN and transfer 
learning models, were used18,19. Although these methods have shown considerable predictive abilities, their 
effectiveness is highly dependent on the specific features chosen and may not fully capture intricate connections 
within peptide sequences. However, in recent times, deep learning techniques such as CNNs and transformers 
have emerged as powerful tools for automatically extracting hierarchical characteristics and comprehending 
long-range relationships in sequences20. Using these architectures, we can potentially improve the precision and 
speed in predicting hemolytic activity. The specialized design of CNNs allows effective detection of local patterns, 
while the innovative use of attention mechanisms in transformers enables the identification of broader connec-
tions within sequences19,21. The proposed approach was built on this literature to contribute a novel perspective 
to predicting hemolytic activity. This synergistic combination enables our model to learn complex sequence-
structure relationships with exceptional accuracy, exceeding the limitations of previous methods. The critical 
insights drawn from existing literature guide our methodology, laying the groundwork for a comprehensive and 
innovative approach to predicting hemolytic activity in peptides. Critically, theoretical modeling approaches 
based on ordinary differential equations (ODEs) have been instrumental in predicting diseases and deciphering 
intricate biological processes. Studies utilizing ODE-based theoretical modeling, such as those referenced22–24 
provide valuable insights into dynamic systems and can complement our computational framework for pre-
dicting hemolytic activity. By incorporating these theoretical modeling paradigms into our discussion, we aim 
to not only enhance the depth of our analysis but also highlight future research directions. The integration of 
computational methods with theoretical modeling promises to further advance our understanding of hemolysis 
in peptides, ultimately contributing to more effective drug design and therapeutic strategies. For more details 
on the identification of peptides using mathematical models, the reader can refer to DiMaggio et al.25. On the 
other hand, for more details on how to formulate real-world problems as mathematical models, the reader is 
referred to Badr et al.26–28.

The advancement of interaction prediction research in computational biology, particularly the use of graph 
neural networks (GNNs) for miRNA-lncRNA interaction prediction, has provided valuable insights into genetic 
markers and non-coding RNAs. It is essential to cite pivotal computational models in this domain, such as 
those detailed in studies29–36, which have contributed significantly to the field. Furthermore, acknowledging the 
progress in interaction prediction research across various computational biology domains is vital. These studies 
offer valuable insights into genetic markers and associated diseases, underscoring the importance of referenc-
ing key computational models within these domains. Relevant studies37,38 should be included to highlight the 
advancements and contributions to the field.

In this paper, our structure is as follows: after this introduction, we will dive into the methodology we utilized 
to construct and train our predictive models, exploring the reasoning behind incorporating CNNs and transform-
ers. We will then discuss our results and evaluate their performance. Finally, we emphasize the importance of 
our research and suggest potential avenues for further advancement in predictive modeling for peptide design 
and biomedical applications.

Data and methods
In this section, we provide a detailed overview of the datasets used and the methodology used in our study to 
predict hemolytic activity in peptides utilizing CNNs and transformers.

Data collection
Our research uses a variety of datasets, ensuring that our predictive models are accessible and widely applicable. 
The main datasets utilized in this investigation comprise RNN-Hem18, Hlppredfuse12, and Combined19. These 
datasets incorporate a diverse set of peptide sequences with documented hemolytic activities that serve as the 
basis for the development, validation, and testing phases of our models.

Table 1 presents a comprehensive overview of the datasets utilized in our research, emphasizing their dis-
tinct sources and composition of positive (hemolytic) and negative sets (non-hemolytic). The datasets, namely 
RNN-Hem, Hlppredfuse, and Combined, have been curated from reputable sources in the field. Each dataset 
contributes to the diversity of our study by incorporating a wide range of peptide sequences with documented 
hemolytic activities. RNN-Hem Sourced from Capecchi et al.18, this dataset includes 1359 instances in the posi-
tive set and 1198 instances in the negative set. Hlppredfuse12 obtained from Hasan et al.12, this data set comprises 

Table 1.   Overview of data sets used in the study.

Dataset Source Positive set Negative set

RNN-Hem Capecchi et al.18 1359 1198

Hlppredfuse Hasan et al.12 1096 2422

AMP-Combined Salem et al.19 3007 4172
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1096 instances in the positive set and 2422 instances in the negative set. Combined with an extract from Salem 
et al.19, this data set incorporates 3007 instances in the positive set and 4172 instances in the negative set.

These datasets are crucial for the success of our model development process. By incorporating a variety of 
sources and a large number of instances, our predictive models can utilize a diverse and comprehensive sample. 
This improves their strength and ability to be applied in various situations. In the following sections, we will dis-
cuss in detail the techniques used in handling and harnessing these datasets for training and assessing our models.

Data representation
The way we represent peptide sequences profoundly influences the ability of deep-learning models to unlock their 
hemolytic potential. Automated representation based on deep learning of biological sequences is effective while 
saving time and effort in traditional methods of gathering information39. A thoughtfully designed numerical 
representation not only captures the essence of each amino acid but also cultivates a structured landscape where 
patterns of hemolytic activity can emerge. In this pursuit, we embarked on decoding the hidden language of pep-
tides, carefully crafting a representation that enables our models to delve into the depths of peptide sequences and 
illuminate their hidden relationships with hemolysis. Each peptide sequence was segmented into its fundamental 
amino acid units, creating a vocabulary of 20 distinct amino acid symbols. Each amino acid token was assigned 
a unique numerical index, effectively translating the symbolic sequence into a numerical format suitable for 
computational processing. To maintain consistency in input dimensions for deep learning models, we padded 
sequences with zeros up to a fixed maximum length of 50. Given that most of the peptides in our datasets pos-
sess lengths below 50, we opt for this maximum length to efficiently represent the majority of sequences while 
maintaining sufficient capacity for potential long-range dependencies within this range. This ensures a uniform 
input structure, even with varying sequence lengths. Through this carefully designed numerical representation, 
we transformed the raw peptide sequences into a structured format that empowers our deep learning models to 
uncover the intricate relationships between amino acid composition and hemolytic potential.

As shown in Fig. 1, each amino acid within the peptide sequence (LAEWNAE) is transformed into a unique 
numerical index. For example, the first amino acid L is represented as 5. This encoding preserves the distinct 
identity of each amino acid while facilitating efficient processing by deep learning models. By padding shorter 
sequences with zeros up to a maximum length of 50 (as shown in the figure), we ensure a consistent input format 
regardless of the peptide’s actual length, enabling the models to focus on the relevant sequence patterns.

Methodology
The intricacies of peptide hemolysis are analogous to deciphering a complex puzzle, where individual amino 
acids serve as the pieces and their arrangement dictates the hemolytic potential. In this effort, we constructed 
a deep learning architecture that seamlessly integrates local and global analyses, as shown in Fig. 2, harnessing 
the complementary strengths of CNNs and transformer-based attention mechanisms.

At first, CNNs play a pivotal role as they meticulously scan the peptide sequence. They diligently detect 
recurring patterns, examine the bonds between adjacent amino acids, and unravel the close-range connec-
tions that contribute to the fundamental components of hemolytic activity. Similarly to recognizing familiar 
melodies, CNNs establish a solid understanding of how local collaborations shape the initial characteristics of 
the hemolytic profile. However, the complexity of the melody goes beyond these immediate harmonies. Here, 
the Transformers take the lead. With attention mechanisms that span the entire sequence, they carefully study 
the subtle relationships between distant amino acids. This global perspective unveils long-range collaborations 
that can enhance or mitigate the hemolytic tendencies established by local motifs. These previously overlooked 
connections now become integral components, enriching the model’s understanding of the peptide’s overall 
hemolytic potential. The synergy between local analysis and global exploration is fundamental to the power 
of our architecture. The insights obtained, whether short-range motifs identified by CNNs or long-range con-
nections revealed by transformers undergo meticulous processing by dedicated feed forward networks40. These 
processes delicately shape the raw data, providing an all-encompassing description of the subtle mechanisms 

Figure 1.   encoding applied to the peptide sequence.
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that drive hemolytic activity. It is like extracting the very essence of a puzzle, capturing every subtle detail and 
interplay that forms the hemolysis profile.

Throughout the training process, we carefully select a specific set of hyperparameters to enhance the per-
formance of our model. These hyperparameters consist of pre-training adjustments that impact the behavior of 
the model but are not acquired during the training itself. In this context, some noteworthy examples of hyper-
parameters include the quantity and dimensions of filters utilized in the convolutional layers, the size of pooling 
windows employed in the pooling layers, the number of neurons within the fully connected layers, the optimizer’s 
learning rate, the duration of time to train the model, as well as the batch size. For further details, please refer to 
Table 2 which outlines the specific hyperparameters used during the training process.

Software and hardware
The development and execution of machine learning models were carried out seamlessly using a comprehensive 
set of software and hardware resources. Python (3.10) emerged as the primary programming language, supported 
by essential libraries such as Pandas, NumPy, Matplotlib, and scikit-learn for data manipulation, analysis, and 
visualization. Deep learning models were implemented with TensorFlow (2.13.0). In terms of hardware, Kaggle 
computational resources, including GPU (GPU T4 ×2) capabilities, were used for model training and evaluation.

Model evaluation
To evaluate the performance of the hybrid Transformer-CNN model, we used accuracy (Acc), precision, recall, 
Area under the ROC Curve (ROC-AUC), and Matthews correlation coefficient (MCC)41. The evaluation metrics 
are defined in the following equations:

(1)Acc =
TP + TN

TP + TN + FP + FN
× 100

Figure 2.   Hybrid transformer-CNN architecture for predicting hemolytic activity of peptides.

Table 2.   Parameter settings for the proposed model.

Parameters Value

Number of convolutional layers 1

Number of dense layers (FC) 2

Number of filters [256]

Filter length [5]

Hidden neurons [512, 256]

vocab_size 1024

Activation function (FC) ReLU

Activation function output Sigmoid

Batch size 32

Learning rate 0.0001

Optimizer Adam

Loss function Binary cross entropy
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Results
In this section, we present the performance metrics of our proposed hybrid transformer-CNN architecture 
model across three distinct datasets. RNN-Hem18, Hlppredfuse, and Combined. Furthermore, a comprehensive 
comparative analysis with previously used methods further elucidates the efficacy of our model.

Table 3 shows that the model achieved substantial accuracy (79.69%), precision (82.93%), recall (76.69%), 
ROC-AUC (0.861), and MCC (0.5962) in the RNN-Hem dataset, indicating its ability to identify hemolytic 
activity within peptide sequences. Demonstrated exceptional performance with high accuracy (96.16%), preci-
sion (93.27%), recall (94.55%), ROC-AUC (0.976), and MCC (0.9111) in the Hlppredfuse12 dataset, showcasing 
the robustness of the model in predicting hemolytic potential. The Combined dataset displayed commendable 
metrics, with notable accuracy (89.28%), precision (87.59%), recall (86.41%), ROC-AUC (0.942), and MCC 
(0.7788), highlighting the consistency of the model in various datasets. The hybrid transformer-CNN architecture 
model consistently exhibits strong predictive capabilities across varied datasets, underscoring its versatility and 
effectiveness in accurately predicting hemolytic potential in peptides.

In Table 4, our proposed hybrid transformer-CNN architecture model exhibited competitive or superior 
metrics in the RNN-Hem dataset18, showcasing its effectiveness in achieving comparable or even better predic-
tive performance compared to established classifiers. AMPDeep19 demonstrated competitive accuracy, precision, 
recall, ROC-AUC, and MCC, positioning itself as a strong contender against traditional classifiers. Existing clas-
sifiers, namely SVM-Hem18, RF-Hem18, and RNN-Hem18, achieved moderate performance but were surpassed by 
the proposed model and AMPDeep19. Moving to Table 5, our proposed model outperformed existing classifiers in 
the Hlppred-Fuse dataset12 in terms of accuracy, precision, recall, ROC-AUC, and MCC, highlighting its efficacy 

(2)Precision =
TP

TP + FP
× 100

(3)Recall =
TP

TP + FN
× 100

(4)Mcc =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Table 3.   Performance of the proposed model in the three data sets.

Dataset Accuracy (%) Precision (%) Recall (%) ROC-AUC​ MCC

RNN-Hem18 79.69 82.93 76.69 0.861 0.59

Hlppredfuse12 96.16 93.27 94.55 0.976 0.91

AMP-Combined19 89.28 87.59 86.41 0.942 0.77

Table 4.   Comparison of the proposed model with the previous methods in the RNN-Hem dataset. Bold values 
are for the best-performing model.

Classifier Accuracy (%) Precision (%) Recall (%) ROC-AUC​ MCC

SVM-Hem18 73 72 58 0.69 0.44

RF-Hem18 77 81 60 0.8 0.53

RNN-Hem18 76 70 76 0.87 0.52

AMPDeep19 79.97 79.88 83.28 0.8723 0.5972

Proposed model 79.69 82.93 76.69 0.861 0.5962

Table 5.   Comparison of the proposed model with the previous methods in the HLPpred-Fuse dataset. Bold 
values are for the best performing model.

Classifier Accuracy (%) Precision (%) Recall (%) ROC-AUC​ MCC

HLPpred-Fuse12 – – 84.5 0.967 0.823

HemoPI16 – – 80.4 0.952 0.754

HemoPred42 – – 65.2 0.34

AMPDeep19 93.69 86.67 88.24 0.9716 0.8324

Proposed model 96.16 93.27 94.55 0.9762 0.9111
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in accurately predicting hemolytic potential. Although AMPDeep19 showed strong performance metrics, the 
proposed model surpassed it in multiple evaluation criteria. The existing classifiers exhibited varied performance, 
underscoring the superiority of our proposed model in predicting hemolytic activity. In Table 6, the proposed 
model demonstrated better accuracy, precision, recall, ROC-AUC, and MCC compared to existing classifiers 
in the Combined data set19, indicating its robustness in predicting hemolytic potential. Although AMPDeep19 
showed competitive performance, the proposed model outperformed it in multiple evaluation metrics. This col-
lective evidence underscores the consistent effectiveness of our proposed hybrid transformer-CNN architecture 
model in predicting hemolytic activity across interdisciplinary datasets, positioning it as a powerful and versatile 
tool in computational biology.

Table 7 presents the performance metrics of the model without the CNNs module across three datasets: 
RNN-Hem, Hlppredfuse, and AMP-Combined. This table is crucial for understanding the impact of the CNNs 
module on the overall model performance and identifying its supportive contribution. In the RNN-Hem dataset, 
removing the CNNs module led to a decrease in accuracy from 79.69 to 74.02%, precision from 82.93 to 79.04%, 
recall from 76.69 to 68.05%, ROC-AUC from 0.861 to 0.7424, and MCC from 0.5962 to 0.4877. Similarly, in 
the Hlppredfuse dataset, the model without CNNs showed reduced performance in accuracy, precision, recall, 
ROC-AUC, and MCC compared to the full model. The AMP-Combined dataset also exhibited lower metrics 
without the CNNs module, indicating its significant contribution to the model’s predictive capabilities across 
different datasets.

To examine the model learning process, we visualized its accuracy and loss curves in the three data sets, as 
shown in Fig. 3. In particular, the accuracy curves for all datasets exhibited a consistent upward trend, indicat-
ing successful learning and convergence towards optimal performance. This pattern was particularly evident for 
the Hlppredfuse dataset, where the model achieved remarkable accuracy during training. Loss curves showed 
a steady downward trajectory, reflecting a gradual reduction in prediction errors as training progressed. This 
decline was particularly pronounced for the AMP-Combined dataset, demonstrating efficient error minimiza-
tion. Collectively, these curves affirm the model’s ability to effectively learn from the training data and refine its 
predictive capabilities over time. This robust learning behavior underpins the model’s exceptional performance 
in predicting peptide hemolytic activity. This decline was particularly pronounced for the Combined dataset, 
demonstrating efficient error minimization. Collectively, these curves affirm the model’s ability to effectively learn 
from the training data and refine its predictive capabilities over time. This robust learning behavior underpins 
the model’s exceptional performance in predicting peptide hemolytic activity.

The training process is a critical aspect of model development and influences both the time required for 
convergence and the complexity of the trained model. Table 8 provides information on the training time for 
each dataset and the corresponding number of trainable parameters in the proposed hybrid transformer-CNN 
model. The proposed model comprises a total of 11,748,097 trainable parameters, indicating the complexity of 
the neural network architecture. This parameter count encompasses the weights and biases in the convolutional 
and transformer layers, as well as the fully connected layers, contributing to the model’s ability to capture intricate 
patterns within peptide sequences.

Conclusions
In conclusion, our research presents an innovative computational method for forecasting the hemolytic poten-
tial of peptides. By combining the strengths of CNNs and transformer-based attention mechanisms, our hybrid 
transformer-CNN model can detect complex patterns within peptide sequences. This results in highly accurate 
predictions of hemolytic activity. Our model’s success can be seen in its performance on various datasets, such 
as RNN-Hem, Hlppredfuse, and Combined. The proposed method achieved the highest prediction accuracy 
with Matthews’s correlation coefficients of 0.5962, 0.9111, and 0.7788 on these datasets, respectively. Compara-
tive analyses highlight the competitive or superior performance of our hybrid Transformer-CNN architecture 
model compared to existing classifiers. Across the RNN-Hem, Hlppredfuse, and Combined datasets, our model 
outperforms or matches the performance of established methods, demonstrating its effectiveness in addressing 

Table 6.   Comparison of the proposed model with the previous methods in the AMP-Combined dataset. Bold 
values are for the best performing model.

Classifier Accuracy (%) Precision (%) Recall (%) ROC-AUC​ MCC

AMPDeep19 86 90.91 80 0.8964 0.7252

Proposed model 89.28 87.59 86.41 0.942 0.7788

Table 7.   Performance of the model without CNN in the three data sets.

Dataset Accuracy (%) Precision (%) Recall (%) ROC-AUC​ MCC

RNN-Hem18 74.02 79.04 68.05 0.7424 0.4877

Hlppred-fuse12 94.89 94.23 89.09 0.9331 0.8799

AMP-Combined19 86.98 86.32 81.54 0.8619 0.7305
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the challenges associated with predicting hemolytic potential. Despite these successes, our model has limita-
tions that must be considered. The model’s performance is heavily dependent on the quality and diversity of the 
training datasets. The current datasets may not cover all possible peptide variations, potentially affecting the 
model’s generalizability. The computational intensity required for training and optimizing the model may not be 
accessible to all researchers, given the need for high-performance GPUs and substantial memory capacity. The 
complexity of the model poses challenges in interpretability, the predictions generated by the model need to be 
experimentally validated to confirm their accuracy and reliability in real-world scenarios. Future research could 

Figure 3.   Model accuracy and loss curve for three datasets (a) RNN-Hem, (b) Hlppredfuse, and (c) Combined.

Table 8.   Training time and training parameters that were associated with the proposed model.

Dataset Training time (seconds) Trainable parameters

RNN-Hem21 52.78 11,748,097

Hlppredfuse12 50.25 11,748,097

Combined19 102.55 11,748,097
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explore the extension of our model to additional datasets, further validating its generalizability. Additionally, fine-
tuning the model’s hyperparameters and exploring different architectural configurations may offer opportunities 
for refinement and improvement. Our work sets the stage for continued advancements in predictive modeling of 
hemolytic activity, with potential implications for the broader fields of bioinformatics and drug discovery. Finally, 
partially ordered sets can be used according to their effect on red blood cell hemolysis, presenting a promising 
direction for future investigations.

Data availability
The data and the scripts for this work are available through GitHub at https://​github.​com/​moham​edelh​akim/​
Trans​former-​CNN-​Archi​tectu​re and You can run the code on the link: https://​www.​kaggle.​com/​code/​moham​
edelh​akim/​cnn-​trens-​paper.
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